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Abstract-We can expect to see an increase in the 
deployment of unmanned air and land vehicles for 
autonomous exploration of space. In order to maintain 
autonomous control of such systems, it is essential to track 
the current state of the system. When the system includes 
safety-critical components, failures or faults in the system 
must be diagnosed as quickly as possible, and their effects 
compensated for so that control and safety are maintained 
under a variety of fault conditions. The Livingstone fault 
diagnosis and recovery kernel and its temporal extension L2 
are examples of model-based reasoning engines for health 
management. Livingstone has been shown to be effective, it 
is in demand, and it is being further developed. It was part 
of the successful Remote Agent demonstration on Deep 
Space One in 1999. It has been and is being utilized by 
several projects involving groups from various NASA 
centers, including the In Situ Propellant Production (ISPP) 
simulation at Kennedy Space Center, the X-34 and X-37 
experimental reusable launch vehicle missions, Techsat-21, 
and advanced life support projects. Model-based and 
consistency-based diagnostic systems like Livingstone work 
only with discrete and finite domain models. When 
quantitative and continuous behaviors are involved, these 
are abstracted to discrete form using some mapping. This 
mapping from the quantitative domain to the qualitative 
domain is sometimes very involved and requires the design 
of highly sophisticated and complex monitors. We propose 
a diagnostic methodology that deals directly with 
quantitative models and behaviors, thereby mitigating the 
need for these sophisticated mappings. Our work brings 
together ideas from model-based diagnosis systems like 
Livingstone and concurrent constraint programming 
concepts. The system uses explanations derived fiom the 
propagation of quantitative constraints to generate conflicts. 
Fast conflict generation algorithms are used to generate and 

maintain multiple candidates whose consistency can be 
tracked across multiple time steps. 
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1. INTRODUCTION 
Model-based Diagnosis '(MBD) uses a general-purpose 
model of the internal structure and/or behavior of systems to 
perform the diagnosis task [l] .  Such models may be 
structural and/or functional models. The diagnosis based on 
these models takes advantage of the analytical redundancy 
in the models, which is captured as static and/or dynamic 
relations between the inputs to the system and the outputs 
fiom the system. The basic principle of MBD can be 
understood as the interaction between predictions and 
observations (Figure 1). The system behavior is measured 
by sensors. The computational model of the system can be 
used to predict what these measurement values should be 
under nominal conditions. The predicted behavior is 
compared to the observed behavior to identify any 
discrepancy. 
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The Livingstone fault diagnosis and recovery kernel [Z] and 
its temporal extension L2 [3] are examples of model-based 
diagnosis engines. Using a simple language developed 
specially for L2, domain experts can program discrete-state 
models of components of systems like spacecraft. Each 
component’s various nominal and failure modes, along with 
constraints upon the transitions between modes, are 
specified. Multiple components can then be composed into 
one complete model representing a finite-domain concurrent 
transition system description of a complete device to be 
monitored, diagnosed, and possibly controlled. At runtime, 
LZ accepts input in the form of commands issued to the 
system and the observations (through sensors) from the 
system. Commands are propagated through the model 
system and when conflicts hetween the model state and the 
sensed state are detected, a diagnosis can be performed. The 
diagnostic process consists of a search, starting from the 
current hypothesized state, for a model state consistent with 
current observations. Usually this results in the diagnosis of 
a failed component or set of components. Failure candidates 
are found in order of their likelihood, based upon a priori 
individual component failure probabilities. The use of 
conflicts (discovered by the truth maintenance system 
representation of the problem) to focus the search allows for 
real-time performance on relatively complex spacecraft 
models. 

Livingstone successfully flew on Deep Space One as part of 
the Remote Agent experiment. L2 is currently being used 
for diagnosis of systems from a wide variety of domains 
including International Space Station [4]. However, when 
LZ was applied to the propulsion system of the X-34 
reusable launch vehicle as part of Propulsion IVHM 
Technology Experiment (PITEX), several limitations were 
exposed. Many artificial artifacts had to be introduced into 
the models and sophisticated “monitors” had to be 
developed tu convert the sensed data into a form that is 
suitable for input to L2. These problems are direct 
consequence of the inability of L2 to handle quantitative 
and/or. continuous dynamics . in the system including 
transients. Similar problems have manifested themselves 
when Q i n g  to use L2 in other applications like the Reverse 
Gas Water Shift (RWGS) system and the ISS Command & 
Data Handling (C&DH) system. 

In this paper, we identify these key limitations of the L2 
health management system and present an extension called 
Livingstone 3 (L3) that addresses these limitations. We will 
present the new modeling framework that provides the 

Figure 1: Model-based Diagnosis 
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Figure 2: L2 Diagno5is Architecture 
support for development of models with new features like 
continuous dlnaniics and the diagnosis architecture that 
contains the algorithmb that use these model, !‘or diagnosis 
of hvbnd systems (systems that exhibit discrete as well as 
continuous behavior). Finally \\U will shou the hnctioning 
of the diagnostic engine through an example sod tabulate 
results from tssts on applying L3 to a set of zxamples. 

2. L2 ASD 11s Llhll I‘TIOSS 

Livingstone and L2 have focJscd on modeling the system to 
be dugnoscd using a set of hiph-le\el, qu3lirntive models 
that focus on a dtscretz characterization of the sydem’s 
behavior. The undsrlying model that L 2  uses for diagnostic 
reasoning has to bz in propositional logic iorm. more 
specifically in ilaudol form. The two main entities uf this 
framework are f‘ropusirions and Cluitjr.~. Propositions are 
variables that are Boolean valued and can take on one of 
three \'slues TRUE, FALSE, or USKKOWN. Propositions 
are used in L? to represent the variable, in the system as 
well as tipernling modes of the system and the mode 
transitions between the openting modes. Faults in  the 
system are modeled 3s transitions to a faulty mode 01‘ 
operation. It is assumed that the behmior of ths  syhteni in 
this faulty mode can also be specificd (sometimes unknown 
faulty modes that allow any behaviors are used to capture all 
unanticipated faults). The diagnostic problem is to 
dctermine whi2h if any ut‘ this faulty mode transitions 
occurred. Clauses are disjunctions of propositions or 
negations of propositions. These represent the constraints on 
the behavior ofthe systcm. 

The Livingstone (L2)  diagnosis approach is presented in 
Figure 2.  Diagnosis is performed as a two step procedure, 
with the steps alternating. In tho first step. possible 
candidates are genernted and then in the second step. thssc 
candidates are tested tior consistency with the commands 
and obscnaiions seen from the system. A candidate is a set 
of fault) mode trnnsitions (possibly smpty indiinting no 
fault) that the system is assumed to have token ai each timz 
step in Its behavior ewlutiun. Candidnte generation is hnsed 
on a conflict directed search [ 5 ]  algorithm. Each candidate 
is tested ior consistency through Boolean ionstmint 
propagJtion (unit propagotion) h o u g h  the bet  of cIauses 
that the candidnte entails. Commands and Observations are 
also added as clauses bciore propngntion. In order tu handle 
transition systems, clauses at ssveral time steps are 
maintained as well as transition clauses between time steps. 
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If the propagation results in an inconsistency (the set of 
clauses cannot be satisfied by any assignment to 
propositions), a truth maintenance syslem is used to identify 
minimal conflicts to guide the candidate generation. 

This underlying propositional logic representation presents 
some problems when modeling systems that are not Boolean 
in nature such as circuits and logic gates. Currently 
Livingstone supports models that involve variables with 
values from a finite domain and very simple constraints. 
Finite domain variables are converted to propositions by 
creating a proposition for each value the variable can take 
and creating a set of clauses that ensure one and only one of 
these propositions may be true. For example, if a variable X 
can take values (low, nominal, high), the following 
propositions are created 

PI: X=low 
P2: X=nominal 
P3: X=high 

and the following clauses are created 

Cl: X=low v X=nominal v X=high 
C2: -X=low v -X=nominal 
C2: -X=low v -X=high 
C2: -X=nominal v -X=high 

It is clear that the number of clauses just to represent one 
variable is (n + 1 + "C,) where n is the number of values 
that the variable can take. Obviously it is impossible to 
represent variables from an infinite domain (e.g., real- 
valued variables) in this framework. 

Since only clauses are allowed to model system behavior, 
the modeling is restricted. In addition to Boolean formulae, 
only equality of variables is allowed. Even for representing 
this simple constraint a large number of clauses are 
required. For example, X=Y has to he represented as: 

c1:  -X=l0w v Y=low 
C2: -X=nominal v Y=nominal 
C3: -X=high v Y=high 
c4 :  -Y=low v X=low 
C5: -Y=nominal v X=nominal 
C6: -Y=high v X=high 

It is clear that ( 2  * n) clauses are required to represent an 
equality constraint where n is the number of values in the 
variables domain. 

When dealing with variables that are from an infinite 
domain, they have to be converted to a set of fmite values 
using binning strategies. For example we might consider 
three bins, low (-cc to 0), nominal (= 0), and high (0 to a). 
The binning strategy is dependent on the different behaviors 
we want to distinguish. There are several problems with 
both designing and then implementing the binning strategy. 

The design is non-trivial and requires extensive domain 
knowledge or lots of simulation (including fault simulation) 
results. Even after that, there may he too many bins (leading 
to a large number of clauses as seen earlier) or the mapping 
may he too complex. The implementation of the mapping 
J?om the continuous domain to the discrete L2 
representation is sometimes very involved and requires the 
design of highly sophisticated and complex monitors due to 
the presence of sensor noise, system transients, etc. 

Given these limitations, both the modeling framework and 
the diagnosis algorithms need to he changed in order to 
allow efticient diagnosis of systems that include quantitative 
and continuous behavior. In the next section we will present 
our new modeling framework for Livingstone 3. In the 
following section, we will present the Livingstone 3 
diagnosis architecture that allows the diagnosis of hybrid 
systems. 

3. MODELING FRAMEWORK 
Our modeling approach is based on the hybrid automata 
formalism [6] .  In this formalism, the discrete state of the 
system is modeled as a finite state automaton. Each state of 
the automaton represents a mode of continuous operation of 
the system. Accordingly, within each state, a set of 
equations (differential and algebraic equations) are used to 
describe the behavior of the system in that mode. The 
transitions hetween the various states of the automaton may 
be based on external eventsicommands (commanded 
transitions) or internal conditions (autonomous transitions). 
The two limitations we had with this formalism were that (i) 
we wanted to generalize beyond differential algebraic 
equations and (ii) we wanted to use a component connection 
modeling approach rather than specify a single finite state 
automaton for the entire system. 

We use a hierarchical and component connection model in 
conjunction with hybrid constraint automata as our 
modeling kamework. The basic building blocks of the 
model are components, which typically represent a physical 
device, or a physical subsystem, or a logical grouping of 
subsystems in a system. Components may be nested inside 
components to build up a hierarchy to any arbitrary depth. 
Components contain variables, constraints, and at most one 
finite state automaton. Variables could be from any domain, 
for example boolean, enumeration, real valued, interval 
valued etc. Some variables in the component are identified 
as port variables. These variables are special variables that 
can he used create connections between components. A 
connection between port variables in two different 
components indicates that the variables are constrained to be 
equal valued. Variables are also marked as state, observable, 
and input indicating whether they are state variables. 
measured or input to the system respectively. Constraints 
represent relations over variables. The types of relations 
that can be specified depend on the types of the variables. 
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Figure 3: L3 Diagnosis Architecture 

For example in the Boolean domain, any Boolean formula 
can be used as a relation whereas in the real valued domain, 
any differential and algebraic equation may be used as a 
relation. Since these constraints do not depend on the mode 
of the component, we call them persistent constraints 
implying that variables can only take on values so that these 
constraints are satisfied at all points in time. 

The finite state automaton (FSA) in the component is used 
to represent the continuous modes of operation of the 
component similar to the hybrid automata approach. Each 
automaton consists of a set of locations (representing the 
states of the finite state automaton) and transitions between 
the locations. Each location consists of a set of constraints 
that describe the relations that hold over the variables when 
the component is in that location (mode). We call these 
volatile constraints to indicate that they need to be satisfied 
only when the component is in that mode of operation. The 
transition between locations consists of a guard condition 
and a probability value. The guard condition is special kind 
of constraint that evaluates to a Boolean value. For example, 
in the Boolean domain this could be any Boolean formula 
but in the real valued domain it is any relational formula. 
We call the guard condition an "ask" constraint, since if the 
constraint evaluates to true then the transition is taken. The 
probability on the transition indicates likelihood of the 
transition being taken. This probability is especially needed 
to represent faulty transitions. Some transitions are marked 
as faulty transitions, indicating that these are autonomous 
(not commanded) and unobservable events. These are the 
events whose occurrence we want to diagnose. They have 
no guard conditions and the probability on these transitions 
indicate the prior probability of such a fault occurring. 

4. DIAGNOSIS ARCHITECTURE 

The L3 diagnosis architecture is illustrated in Figure 3. It 
consists of three main components. The system model stores 
the model of the system and is responsible for tracking the 
modes of operation of the different components and 
determining the constraints that are valid at any point in 
time. The Constraint system serves the role of tracking the 
overall system behavior using constraint programming 
techniques. It receives constraints from the System Model 
indicative of the current configuration of the system and 
propagates these constraints in order to try to assign 
consistent values to variables in the system. When 
inconsistencies are seen (observations are different from 
propagated values for corresponding components), the 

candidate manager is responsible for using the conflicts 
generated as a result of these inconsistencies to generate 
candidates that resolve all the conflicts and that can possibly 
explain all of the inconsistencies. 

The functioning of L3 is best explained through the set of 
steps taken during the run of the diagnostic engine. 
However we will need to defme a few terms that will be 
used in this description. 
Locaiion Assumpiion: An assumption that a component is in 
a specific location. This typically applies only to nominal 
locations. 
Transition Assumption: An assumption that a component 
took a specific transition. This typically applies to only 
faulty transitions. 
Theoy:  The set of variables and constraints over variables 
in the constraint system. 
Conflict: A set of assumptions that make the theory 
inconsistent and hence cannot all be true. 
Candidate: Any set of faulty transition assumptions. 
Valid Candidate: A candidate that resolves all conflicts and 
does make the theory inconsistent. 

The diagnosis proceeds in the following manner. Initially 
the candidate manager has only one candidate called the 
empty (null) candidate, which has no assumptions. This is 
used to indicate that initiatly it is assumed that all 
components are non-faulty. At each time step the following 
things happen for each candidate in the candidate manager: 

Initialize Variable values - The values for state 
variables are obtained from the values at the previous 
time step (at time 0, state variable values are externally 
specified). For all other variables the values are 
initialized to any possible value in their domains. 

Persistent Constraints are added to the constraint 
system. Persistent constraints correspond to constraints 
that are satisfied independent of the location of 
components. In addition all component connections are 
converted to persistent constraints of the form Variable 
= Variable. 

Commands issued at the current time step are added as 
constraints to the constraint system. In this the 
constraints take on the form Variable = Value where 
Variable is the input variable and Value is the value it 
takes. 

Volatile Constraints corresponding to the current 
locations for all components are added to the constraint 
system. Volatile constraints correspond to constraints 
that are only true in specific locations of the 
components. The location assumptions are used to 
determine the current locations of the components and 
then the constraints in those locations are added as 
volatile constraints. 
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The constraint system is propagated. Several 
propagation algorithms including brute force and arc 
consistency have been implemented. 

Observations obtained for the current time step are 
converted to constraints which are then compared 
against predictions for corresponding variables in the 
constraint system. To do this, we convert the 
observation into an “ask” constraint of the form 
Variable = Value. We can then ask this constraint of the 
appropriate constraint. Asking the constraint is 
equivalent to checking if the constraint is satisfied. 
Note that in this form of ask we are interested in 
determining if the constraint may possibly be true 
which can he distinguished from another form of ask 
that checks if the constraint is necessarily true. The 
implementation of the possible “ask” should take into 
account a number of factors like sensor noise, 
modelling errors etc. So for example in a real valued 
constraint store, the possible ask should return true if 
the observation value is within some threshold (dictated 
by noise characteristics) of the predicted value. 

For each observation that is not consistent with the 
theory, conflicts are generated from the explanations 
that were created during the propagation. We first 
determine the constraints whose propagation caused the 
variable involved in the “ask” to be inconsistent. We 
can then trace back from these constraints to any 
location assumptions that were used to add the 
constraints to the constraint store. The conflicts 
generated are across time steps i.e., the inconsistent 
variable value may have been because of a location 
assumption at previous time steps. This is possible 
since state variable values are held across time steps. 

If conflicts are generated, these are added to the 
candidate manager and valid candidates are generated. 
The candidate manager is responsible for generating a 
candidate that resolves all conflicts. A conflict is said to 
be resolved by an assumption A if any one of its 
constituent assumptions is resolved by A. A location 
assumption is resolved by any faulty transition 
assumption from that location. A transition (faulty) 
assumption is resolved by any sibling faulty transition 
assumption. Transition T’ is a sibling of transition T if 
the “from” location of T’ and T are the same. A 
candidate is a set of faulty transition assumptions. A 
candidate resolves a conflict if the candidate has at least 
one assumption that resolves the conflict. We have 
implemented several search strategies like breadth first, 
depth first, best fxst and A* searches that generate 
candidates. 

Transition conditions are evaluated and all enabled 
transitions are fired to update the current locations of 
all components. For this, the constraints on the 
transitions are asked of the constraint system. The form 
of “ask” we are interested in determining if the 

constraint is necessarily satisfied. When dealing with 
real values this might result in problems if we do not 
use probabilistic methods. 

The time step is advanced. 

5. EXAMPLES & RESULTS 

We have run the Livingstone 3 diagnostic engine on several 
test examples including some that were used as regression 
tests for the L2 system. The diagnostic performance of L3 
on the L2 examples was comparable. In addition, L3 is able 
to deal with models that include differential and algebraic 
equations as constraints. The examples we used for our tests 
were the nanoCBandLED (3 components), 
microCBandLED (12 components) and the CBandLED (24 
components) models that are used as regression tests for L2. 
However these models involve only finite domain variables 
and constraints. We transformed the nanoCBandLED to 
include real-valued variables and algebraic constraints for 
testing with L3. Finally we also used tank system models 
involving tanks, inlet pipes, outlet pipes and connecting 
pipes to test L3 on systems with differential equations and 
autonomous transitions. These tank systems have been used 
as test beds for other diagnostic technologies [7, 81. 

R R 
crndln resistance 

Figure 5: Circuit Breaker Model 

We will illustrate the functioning of L3 through a simple 
nanoCBandLED example that includes algebraic 
constraints. The nanoCBandLED system is illustrated io 
Figure 4. It consists of three types of components, current 
source which is a source of a constant current, a circuit 
breaker that can be either on or off. If it is on, it passes the 
current through and if not it does not. The LED is like a 
bulb in that it lights up when current passes through it. 
However the amount of illumination is dependent on the 
amount of current that passes through it. There is also a 
summing junction that sums the current flowing into it and 
sends it out. The model of a circuit breaker (CB) is 
illustrated in Figure 5 .  It consists of currenth, currentout 
and conductance variables that have real values. It also has a 

sounu2 CBI 
Figure 4: nanoCBandLED example 
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cmdln variable that is a signal to turn the CB on and off 
The FSA (illustrated in Figure 6 )  describes the different 
modes of operation of the Circuit breaker and the 
constraints that hold true in each of those modes. The 
constraints in each of the four modes of the CB are given 
by: 

I------ I /  

Figure 6:  FSA for Circuit Breaker 

off: currentout = 0.0 

halfResistance: currentout = 0.5 * conductance * 

blown: currentout = 0.0 

We will consider a scenario where the both CB's are in the 
halfResistance mode. As a result when they are turned on, 
they do pass through all the current but only half of it. This 
results in the LED only receiving only half the normal 
current &om each CB. The fault scenario used is encoded as 

on: currentout = conductance * currenth 

currenth 

0.0 COMMAND CBl.cmd1n on 
0.0 OBSERVE LED.Illumination 0.0 
1.0 OBSERVE LED.Illumination 2 . 5  
1.0 COMMAND CB2.cmdIn on 
2.0 OBSERVE LED.Illumination 5.0 
2.0 COMMAND CBl.cmdIn off 
3.0 OBSERVE LED.Illumination 5.0 
3.0 COMMAND CB2.cmdIn off 
4.0 OBSERVE LED.Illumination 5.0 

where the fmt  column indicates the time, the second 
column indicates whether a command was issued or an 
observation was made, the third column indicates the 
command or observation variable and fourth column 
indicates the actual observation made. The initial states of 
both the CB's are off. The source always supplies a constant 
current of 5 units and all the conductance values are I .  
When L3 is run on this fault scenario it returns the 
following results: 
Candidates 

[ Size: 2 Probability: 4e-05 
Assumptions for time: 1[ 

roLoca t ion= 'ha l fRes i s t ance '  1 
1 
Assumptions f o r  time: 2 [  

Assumption [CBl Transition fromLocation='on' 

Assumption [CBZ Transition fromLocation='on' 
t o L o c a t i o n = ' h a l f R e s i s t a n c e '  1 

) 

TirneOfEaultDetection = 1 

Candidates visited: 55 

I 

L3 figures out that both CB's are at halResistance (only 
those modes make the observations consistent with the 
model). In order to achieve this, it looks at 55 possible 
candidates before finding the correct one. This is because it 
tests candidates in the order of prior probability of failure 
(for multiple faults, probability is product of individual 
probabilities) and as a result all single faults are typically 
tested before double faults. Also since we are dealing with a 
transition system, the same fault occurring at different time 
steps could have different effects on the behavior of the 
system and so L3 has to consider different combinations of 
time steps and faults to consider all possible cases. 

5. CONCLUSIONS AND FUTURE WORK 

We presented the Livingstone 3 model-based diagnosis 
system that extends Livingstone 2 to allow diagnosis of 
hybrid systems. We also presented the modeling framework 
that allows the capture of quantitative and continuous 
constraints for use by L3. This system is capable of 
identifying multiple discrete faults in systems that exhibit a 
mix of discrete and continuous behavior. We have tested L3 
on some simple examples, some of which are used as test 
beds for other diagnostic approaches, and the results are 
promising. 

In future work, we would like to develop other constraint 
systems to be included as part of architecture, specifically 
graph based reasoning systems like flow graphs, and bond 
graphs. In addition, we would like to implement stochastic 
approaches like Kahnan filters and particle filters to handle 
the uncertainties caused by modeling approximations, 
sensor noise, unknown inputs etc. We will also be working 
to improve the constraint propagation strategies for more 
efficient conflict generation. Constraint retraction and re- 
support methods based on explanations could lead to faster 
and efficient constraint propagation. We are also working 
Jet Propulsion Laboratory to develop a fast candidate 
generation algorithm based on Integer Programming [9]. 
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Department of Psychology, Florida International University 
(1982-1986). He holds a B.A. in Psychology (University of 
Michigan, 1971), Ph.D. in Psychology (University of 
Minnesota, 1977), and a B.S. (1980) and M.S. (1982) in 
Computer Science (Florida International University). 

Daniel Burrows is a Master’s student in the Computer 
Science and Engineering Department at Penn State 
University. His research interests are in Software 
Engineering and Constraint Programming. He was a 
summer intern at the NASA Ames Research Center from 
June-August 2003 at which time he was involved in the 
development of the Livingstone 3 model-based diagnosis 
engine. 
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